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An improved Pan-sharpening algorithm appropriate to vegetation applications is proposed to fuse
a set of IKONOS panchromatic (PAN) and multispectral image (MSI) data. The normalized differ-
ence vegetation index (NDVI) is introduced to evaluate the quality of fusion products. Compared
with other methods such as principal component analysis (PCA), wavelet transform (WT), and
curvelet transform (CT), this algorithm has a better trade-off between keeping the spatial and
spectral information. The NDVI performances indicate that the fusion product of this method is
more suitable for vegetation applications than the other methods.
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Light remains less energy when passing a narrow path
than passing a broad one. In optical remote sensing,
it is necessary to extend the instantaneous field of view
(IFOV) so that multispectral sensors can gather enough
energy to form images. This induces that the spatial
resolution of multispectral images (MSIs) is lower than
that of panchromatic (PAN) images. However, spatial
information and spectral information in remote sensing
images are all necessary for many applications such as
researches on urban, vegetation, and geology. Therefore,
it is very useful for remote sensing applications to obtain
images with higher quality by merging PAN and MSI im-
ages. This processing is called Pan-sharpening or image
fusion.

There are three categories of fusion methods[1],
projection-substitution, relative contribution, and meth-
ods that belong to the amelioration de la resolution spa-
tiale par injection de structures (ARSIS) concept[2−11].
Related experiments showed that the former two types
of methods often caused color distortion (or spectral dis-
tortion), and the filtering operation in ARSIS fusion may
produce ringing artifacts[9]. Recent research[1] has shown
that the weakness of fusion methods are mainly caused
by the assumptions when developing different fusion al-
gorithms, and the physical principle should be taken into
account. On the other hand, the commonly used statisti-
cal indices are statistically strong but physically plausible
for remote sensing applications. Our experiments show
that fusion results are not appropriate to some appli-
cations (especially vegetation applications), though the
statistical indices values indicate a good quality. Hence,
how to choose quantitative indices to evaluate the qual-
ity of fusion product is also an important issue. In this
letter, a fusion method taking into account the physical
principle of image formation is proposed. We aim to pro-
duce the fusion products which can preserve the initial
spectral information and be suitable for vegetation appli-
cations. Moreover, the normalized difference vegetation
index (NDVI)[12−14] is introduced as a quantitative index
of “spectral information” to evaluate the quality of fusion

results because of its importance in vegetation studies.
In optical remote sensing, if the atmospheric effects are

neglected, the physical principle of optical image forma-
tion can be approximately written as[7]

DNb(x, y) = kbρb(x, y) cos[γ(x, y)] + Ob, (1)

where DNb(x,y) denotes the digital number of pixel (x,y)
in band b, kb is a constant related to the gain factor of the
sensor calibration coefficients, ρb is the pixel reflectance
observed at the top of atmosphere, γ(x, y) is the solar in-
cidence angle to the terrain surface at pixel (x, y), and Ob

is the offset factor of the sensor calibration coefficients.
Based on this physical principle, Wang et al. proposed

the general image fusion (GIF) framework[7]:
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where DNh
p(Ω), DNl

p(Ω), DNh
b(Ω), and DNl

b(Ω) are DN
values of the object Ω which is represented by pixel (x, y);
the superscripts h and l represent high-resolution and
low-resolution, respectively; and the subscripts p and b
represent p-band (panchromatic band) and b-band (a
band in the original MSI, such as blue band), respec-
tively.

In fusion problems, DNh
p(Ω) and DNl

b(Ω) are known

while DNl
p(Ω) and DNh

b(Ω) are unknown. Then DNh
b(Ω)

can be solved as long as DNl
p(Ω) is obtained. So how

to estimate DNl
p(Ω) is a key problem in the GIF fusion

method. From this point of view, principal component
analysis (PCA) and wavelet transform (WT)[7] fusion can
be regarded as examples of GIF fusion. More detailed
examples can be found in Ref. [7]. Spectral characteris-
tics of objects are not embodied in the commonly used
methods. Here we introduce another method taking into
account the spectral characteristics.

Suppose there is a linear relationship among the re-
flectances of special earth surface on different bands:
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ρp(Ω)= [α1 α2 · · · αn]

·[ρb1(Ω) ρb2(Ω) · · · ρbn(Ω)]T

=

n
∑

i=1

αi · ρbi(Ω), (3)

where ρp represents the reflectance of Ω on p-band light,
and αi (i = 1, 2, · · · , n) represents the reflectance re-
lationship. At a certain time, ρp and ρbi(Ω) (for i =
1, 2, · · · , n) are constants for a certain object Ω. So the
coefficients can be found.

To be simple, let Ob = 0 and we obtain

DNb(Ω) =

n
∑

i=1

βi · DNbi(Ω), (4)

where βi = αi · kp/kbi for i = 1, 2, · · · , n. Equation (4)
means that if there is a linear relationship among re-
flectances, the relationship among the corresponding DN
values is also linear.

For a set of PAN and n-bands MSI at the same spatial
resolution l, we have

DNl
p (Ω) = [β1 β2 · · · βn]

·

[

DNl
b1 (Ω) DNl

b2 (Ω) · · · DNl
bn (Ω)

]T

. (5)

Denoting A = [β1 β2 · · · βn] , DNl
p(Ω) can be obtained

from Eq. (5) if A is estimated.
The new MSI with higher spatial resolution can be ob-

tained through the following method. Firstly, the PAN
image is downsampled to the lower resolution and A is
estimated by total least square (TLS) algorithm with
both the downsampled PAN data and the original MSI
data. Secondly, MSI is upsampled to the higher resolu-
tion and we obtain DNl

p(Ω) via Eq. (5). Thirdly, we
can get fused images by Eq. (2). Moreover, since we
have βi = αi · kpkbi, A will depend on the object Ω. The
pixels of original images should be identified to different
objects via classification algorithm such as K -mean clus-
ter. We call this method a TLS-GIF with classification
(TLS-GIF-WC). The details can be described as the fol-
lowing four steps.

Step 1: downsample the original PAN data and get
DNdownsample

p .
Step 2: classify pixels of MSI to mobjects (Ωi, for

i = 1, 2, · · · , m) by K -mean classification. Then estimate
A by Eq. (5) via the TLS algorithm for every object.

Step 3: upsample MSI and get DNupsample
bi (for i =

1, 2, · · · , m). Then classify pixels of the new MSI to m

objects and estimate DNl
p via Eq. (5) using DNupsample

bi
and A.

Step 4: get DNh
bi

(for i = 1, 2, · · · , m) via Eq. (2).
It is worth mentioning that the above method is based

on the condition Ob = 0. When this condition does not
hold for some sensors, we can subtract Ob from the im-
age data before fusion. With respect to the resampling
techniques, we adopt the cubic convolution algorithm to
upsample and the pixel aggregate algorithm to downsam-
ple the MSI.

In the following, a set of IKONOS images are

fused via TLS-GIF-WC. For comparison, the projection-
substitution method, PCA fusion, and two common AR-
SIS methods, WT and curvelet transform (CT)[15], are
adopted to produce fusion products.

Figure 1 shows the fusion results produced by the four
methods. Visually, the fused images produced by WT
(Fig. 1(d)), CT (Fig. 1(e)), and TLS-GIF-WC (Fig.
1(f)) look clearer than that by PCA (Fig. 1(c)). In other
words, there is more spatial information in the three re-
sults than PCA. However, some artifacts can be found
in Figs. 1(d) and (e). This means that WT and CT
methods get more spatial information at the cost of more
artifacts and TLS-GIF-WC gets a better trade-off.

Regarding the quantitative evaluation of quality, more
and more attention has been paid to the performance
of keeping spectral information. As defined by Wald[16],
“the ‘greater quality’ depends upon the application”. In
vegetation applications such as plant extraction and veg-
etation changing detection, NDVI is a very influential
parameter. So we introduce NDVI as a quantitative in-
dex of spectral information. Researches show that the
NDVI can be calculated from near-infrared (NIR) band
and red band images[17]:

NDVI =
DNNIR − DNred

DNNIR + DNred
. (6)

Table 1 lists the range of NDVI values calculated from
the original MSI, upsampled MSI, and fused images.
Table 1 shows that the range of NDVI values in TLS-
GIF-WC result is consistent with that of upsampled MSI,
but the ranges in PCA, WT, and CT results are changed.
The boundary situations in WT and CT results, –1 and
1, indicate that the DN value of the corresponding pixels

Fig. 1. IKONOs images of a mountain area in China. (a)
PAN, 1 m; (b) MSI, 4 m upsampled to 1 m; (c) PCA fu-
sion result; (d) WT fusion result; (e) CT fusion result; (f)
TLS-GIF-WC fusion result.

Table 1. Ranges of NDVI Calculated from MSI

NDVI Original MSI Upsampled MSI PCA

Minimum –0.5079 –0.4961 –1.0000

Maximum 0.6856 0.6846 0.7359

NDVI WT CT TLS-GIF-WC

Minimum –1.0000 –1.0000 –0.4961

Maximum 1.0000 1.0000 0.6846
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Fig. 2. NDVIs in fused and unfused MSI. (a) PCA fused MSI
compared with upsampled MSI; (b) WT fused MSI compared
with upsampled MSI; (c) CT fused MSI compared with up-
sampled MSI; (d) TLS-GIF-WC fused MSI compared with
upsampled MSI.

in NIR band image or in red band image is zero. This
is not consistent with the original MSI or the upsampled
MSI. Furthermore, 256 pixels are randomly selected from
PCA, WT, CT, and TLS-GIF-WC fusion results sepa-
rately, and the corresponding NDVI values in fused and
unfused MSI are ploted in Fig. 2. It is shown that NDVI
values in TLS-GIF-WC result are the same as those of
unfused MSI but the NDVI values in other three results
do not. This consistency in TLS-GIF-WC result can be
verified through mathematical deduction.

From Eq. (2) we have

DNh
NIR =

DNh
p

DNl
p

· DNl
NIR,

DNh
red =

DNh
p

DNl
p

· DNl
red.

(7)

Combining Eqs. (6) and (7), we obtain

NDVIh = NDVIl, (8)

which means the GIF fusion will not change the NDVI
while enhancing the spatial resolution.

Therefore, the mathematical analysis and experi-
ments show that the TLS-GIF-WC method preserves
more spectral information than PCA, WT, and CT meth-
ods.

Table 2. ERGAS Values of Fused Images

PCA WT CT TLS-GIF-WC

1.2635 1.3267 1.4079 1.3141

A statistical index, the erreur relative globale adimen-
sionnelle de synthese (ERGAS)[11], is adopted to evalu-
ate the performance of keeping spectral information. The
ERGAS values of the fusion results are listed in Table 2.
In Table 2, the ERGAS value of PCA result, is the closest
to the ideal value 0, and the TLS-GIF-WC result is better
than WT and CT results. Combining the performances
in Tables 1 and 2, we can find that PCA has the best
statistical performance, but its NDVI is changed during
fusion process. Since NDVI is one of the most popular
indices reflecting the spectral information of MSI in veg-
etation studies, we had better choose the fusion method
which does not change the NDVI value or some other veg-
etation indices[17]. From this perspective, the proposed
method works best among the four methods.

In conclusion, the TLS-GIF-WC fusion result preserves
more spectral information and TLS-GIF-WC is more
suitable for vegetation application than the other three
methods. As far as fusion method is mentioned, it is
necessary to choose a suitable performance index to in-
dicate whether the fusion products are appropriate to
applications or not. In future work, fusion methods will
be designed by optimizing these special indices.
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